AFFINE FUNCTIONS **ON SIMPLEXES AND EXTREME OPERATORS**

BY

A.J. LAZAR*

ABSTRACT

If K is a simplex and X a Banach space then $A(K, X)$ denotes the space of affine continuous functions from K to X with the supremum norm. The extreme points of the closed unit ball of $A(K, X)$ are characterized, X being supposed to satisfy certain conditions. This characterization is used to investigate the extreme compact operators from a Banach space X to the space $A(K) = A(K, (-\infty, \infty)).$

1. If S is a compact Hausdorff space then it is well known that $f \in C(S)$ is an extreme point of the closed unit ball if and only if $|f(s)| = 1$ everywhere on S. Our first aim is to extend this characterization to the more general situation of the space $A(K, X)$ — the space of affine continuous functions on the simplex K having values in the Banach space X with the supremum norm: $||f|| = \sup_{k \in K} ||f(k)||$. It is shown that if X is strictly convex or if every three mutually intersecting closed balls of X have a point in common then $f \in A(K, X)$ is an extreme point of the closed unit ball if and only if it maps the extreme points of K into the extreme points of the closed unit ball of X (Theorem 3.4). We obtain this characterization through a similar one for the extreme points of the dosed unit ball of $A^*(K, X)$ (Theorem 3.2). In Section 2 we discuss the maximal convex subsets of the unit sphere of $A(K) = A(K, (-\infty, \infty))$; their simple representation is helpful in the next section. In Section 4 we use our results to investigate the extreme compact operators from a Banach space X into $A(K)$. This section contains also a characterization of the extreme positive operators from a *C(S)* space (S metrizable compact Hausdorff) to $A(K)$: their representing functions map the extreme points of K into the point measures of S (Theorem 4.2). The paper ends with an example which shows that the extreme positive operators from an $A(K)$ space to a $C(S)$ space cannot be characterized in a similar manner.

We deal only with Banach spaces over the real field. The closed unit ball of a Banach space X is denoted by S_X . A Banach space is said to have the n.2. intersection property $(n.2.I.P.)$ if every collection of n mutually intersecting closed

^{*} This note is part of the author's Ph.D. thesis prepared at the Hebrew University of Jerusalem under the supervision of Prof. A. Dvoretzky and Dr. J. Lindenstrauss. The author wishes **to** thank them for their helpful advice and kind encouragement.

Received February 28, 1967.

balls in X has a common point. By operators we always mean a bounded linear operator.

If K is a convex subset of a linear space then $F \subset K$ is a face of K if it is convex and satisfies: $0 < \lambda < 1$, $k_1, k_2 \in K$, $\lambda k_1 + (1 - \lambda)k_2 \in F \Rightarrow k_1, k_2 \in F$. An extreme point of K is a one point face of it. The set of the extreme points of K is denoted by ∂K .

Let K be a compact convex subset of a locally convex linear topological space. The probability Radon measures on K are ordered by

$$
\mu > \mu_2 \Leftrightarrow \int_K \phi d\mu_1 \ge \int_K \phi d\mu_2
$$

for every convex continuous function ϕ on K (Choquet's ordering). For each $k \in K$ there is a measure μ on K, maximal in this ordering, which represents k, that is, $f(k) = \int_K f d\mu$ for any affine continuous function f on K (cf. [4], [15]). K is a simplex if for each of its points the representing maximal measure is unique. The reader may find all the fundamental facts about simplexes in $\lceil 4 \rceil$ or $\lceil 15 \rceil$.

If S is a compact Hausdorff space the probability Radon measures on S form a simplex in $C^*(S)$ when this space is endowed with its w^* -topology. This simplex is of a special type since its extreme points form a closed set. $C(S)$ is isometrically isomorphic with the space of all the affine continuous functions on this simplex. We shall make no distinction between S and its canonic image in *C*(S).* Similarly, any simplex K can be imbedded by an affine homeomorphism into $A^*(K)$: $Tk(f) = f(k)$ for $k \in K$, $f \in A(K)$. It is convenient to consider K imbedded in this way into $A^*(K)$.

A collection of non-negative functions $\{f_i\}_{i=1}^n \subset A(K)$ is called a partition of the unity on the simplex K if $\sum_{i=1}^{n} f_i = 1$.

If M is a set then we denote by 2^M the family of all its subsets. Let X, Y be topological spaces. A map $T: X \to 2^Y$ is said to be lower semi-continuous if for any open set $U \subset Y$ the set $\{x \in X : T(x) \cap U \neq \emptyset\}$ is open in X. Suppose that E and F are linear spaces and K is a convex subset of E. A map $T: K \rightarrow 2^F$ is called affine if $T(k)$ is a non-void convex subset of F for every $k \in K$ and

$$
\lambda T(k_1) + (1 - \lambda) T(k_2) \subset T(\lambda k_1 + (1 - \lambda)k_2)
$$

when $0 < \lambda < 1$, $k_1, k_2 \in K$. The following theorem on multi-valued maps defined on simplexes was proved in [12] and it is stated here for the convenience of the reader.

THEOREM 1.1. *(cf.* [12, *Theorem* 3.1, *Corollary* 3.3]).

Let E be a Frechet space and K a simplex. Suppose that $T:K\to 2^E$ is an *affine lower semi-continuous map such that* $T(k)$ is closed for every $k \in K$. Then *there exists an affine continuous selection for T, that is, an affine continuous*

function f: $K \to E$ with $f(k) \in T(k)$ for each $k \in K$. Moreover, if $k_0 \in \partial K$ and $x \in T(k_0)$ then f can be chosen such that $f(k_0) = x$.

2. The following theorem was proved by Eilenberg [9] for the space of all continuous functions on a compact Hausdorff space. The proof given below is an adaptation of his proof to the more comprehensive class of the spaces of affine continuous functions on simplexes.

THEOREM 2.1. *Let K be a simplex and Q a maximal convex subset of* ${f \in A(K): \|f\|=1}.$ Then there exist $k_0 \in \partial K$ and a sign ε (i.e. $\varepsilon = \pm 1$) such *that*

(1)
$$
Q = \{f \in A(K): f(k_0) = \varepsilon, \|f\| \}.
$$

Conversely, every set determined by a point $k_0 \in \partial K$ and a sign ε as in (1) is a maximal convex subset of the boundary of $S_{A(K)}$.

Proof. Let Q be a maximal convex subset of $\{f \in A(K): ||f|| = 1\}$. For every $f \in Q$ we define the following closed faces of K:

$$
F_f^+ = \{k \in K : f(k) = 1\}, \ F_f^- = \{k \in K : f(k) = -1\}.
$$

The first assertion of the theorem will be proved if we show that $\bigcap_{f \in Q} F_f^+ \neq \emptyset$. or $\bigcap_{f \in Q} F_f^- \neq \emptyset$. Indeed, if one of these sets is non-void, say $\bigcap_{f \in Q} F_f^+ \neq \emptyset$, then, being a closed face of K, we can find $k_0 \in \bigcap_{f \in Q}(F_f^+ \cap \partial K)$. Clearly

(2)
$$
Q \subset \{f \in A(K): f(k_0) = ||f|| = 1\}.
$$

and the maximality of Q implies that (2) holds with equality sign between its members.

Let us suppose that $\bigcap_{f \in Q} F_f^+ = \bigcap_{f \in Q} F_f^- = \emptyset$. By the compactness of K there are $\{f_i\}_{i=1}^n$, $\{g_i\}_{i=1}^m$ $\subset Q$ such that

(3)
$$
\bigcap_{i=1}^{n} F_{f_i}^{+} = \bigcap_{j=1}^{m} F_{g_j}^{-} = \varnothing.
$$

Since Q is convex we have $(\sum_{i=1}^n f_i + \sum_{j=1}^m g_j)/(m+n) \in Q$. Hence $\|\sum_{i=1}^n f_i + \sum_{j=1}^m g_j\| = m + n$. Obviously this equality contradicts (3) so (1) holds for a certain point $k_0 \in \partial K$.

Now let $k_0 \in \partial K$, $\varepsilon = \pm 1$ and

$$
Q = \{f \in A(K): f(k_0) = \varepsilon, \|f\| = 1\}.
$$

Assume that there is a convex subset $Q' \subset \{f \in A(K): ||f|| = 1\}$ such that $Q' \supset Q$, $Q' \neq Q$. Pick $f \in Q' \sim Q$ and denote

$$
F^+ = \{k \in K : f(k) = 1\}, \ F^- = \{k \in K; f(k) = -1\}.
$$

The extreme point k_0 does not belong to the closed face $F = \text{conv}(F^+ \cup F^-)$

since $k_0 \notin F^+ \cup F^-$. Indeed, $k_0 \in F^+ \cup F^-$ implies $f \in Q \cup (-Q)$ and if this were true then $0 = \frac{1}{2}[f + (-f)]$ would belong to Q. By a theorem of Edwards [8] there exists $f' \in A(K)$ such that $f'_{F} = 0$, $f'(k_0) = \varepsilon$ and $||f'|| = 1$. Clearly $|| f + f' || < 2$ therefore $\frac{1}{2}(f + f') \notin Q'$ so Q' cannot be convex. This concludes the proof of the theorem.

From a theorem of Lindenstrauss [13, Theorem 4.8] it follows that if Q is a maximal convex subset of $\{f \in A(K): ||f|| = 1\}$ then $S_{A(K)} = \overline{\text{conv}}(Q \cup (-Q)).$ We are going to prove that the closure is superfluous here. Of course, this is wellknown for spaces of continuous functions (see $[11]$).

THEOREM 2.2. *If K is a simplex and Q is a maximal convex subset of* $\{f \in A(K): ||f|| = 1\}$ then $S_{A(K)} = \text{conv}(Q \cup (-Q)).$

Proof. We have to show that $S_{A(K)} \subset \text{conv}(Q \cup (-Q))$. Without loss of generality we may suppose that there exists a $k_0 \in \partial X$ such that

$$
Q = \{ f \in A(K) : f(k_0) = ||f|| = 1 \}.
$$

Let $f \in S_{A(K)}$. If $f \in Q \cup (-Q)$ there is nothing to prove so we may assume that $f \notin Q \cup (-Q)$. Define the following affine continuous functions on K:

$$
f_1(k) = \frac{2f(k) - 1 + f(k_0)}{1 + f(k_0)}, \quad f_2(k) = \frac{2f(k) + 1 - f(k_0)}{1 + f(k_0)}, \quad k \in K.
$$

It is easy to check that $h_1 = f_1 \vee (-1) \le f_2 \wedge 1 = h_2$ and $h_2(k_0) = 1$. From Edwards' separation theorem [8] we infer that there exists a $g_1 \in A(K)$ such that $h_1 \leq g_1 \leq h_2$ and $g_1(k_0) = 1$. If

$$
g_2(k) = \frac{2f(k) - (1 + f(k_0))g_1(k)}{1 - f(k_0)}, \ k \in K,
$$

then it is clear that $g_2 \in -Q$ and

$$
f = \frac{1}{2}[(1 + f(k_0))g_1 + (1 - f(k_0))g_2].
$$

Since $-1 < f(k_0) < 1$ we proved that $f \in conv(Q \cup (-Q))$ and this concludes the proof of the theorem.

3. We now pass to the space $A(K, X)$ and its dual. The following lemma is an easy consequence of Lemma 2.4 of [12].

LEMMA 3.1. Let K be a simplex and X a Banach space. The following sub*set of* $A(K, X)$ *is norm dense in* $A(K, X)$:

$$
\left\{\sum_{i=1}^n \phi_i x_i : \{x_i\}_{i=1}^n \subset X, \ \{\phi_i\}_{i=1}^n \subset A(K), \ \sum_{i=1}^n \phi_i = 1, \ \phi_i \geq 0\right\}.
$$

THEOREM 3.2. Let K be a simplex, X a Banach space, $k \in \partial K$ and $x^* \in \partial S_{\mathbf{x}^*}$. *The functional* $y^*_{k,x} \in A^*(K,X)$ *defined by*

(1)
$$
y_{k, x^*}^*(y) = x^*(y(k)), \quad y \in A(K, X)
$$

is an extreme point of the closed unit ball of $A^*(K,X)$ *. Conversely, to every extreme point of this ball there correspond a k* $\in \partial K$ *and an* $x^* \in \partial S_{x^*}$ *related to it by* (1).

Proof. Denote $Y = A(K, X)$. Clearly if $k \in \partial K$ and $x^* \in \partial S_{X^*}$ then the functional $y_{k,x}^*$ given by (1) belongs to S_{Y^*} . Suppose that there are $y_1^*, y_2^* \in S_{Y^*}$ such that

(2)
$$
y_{k,x^*}^* = \frac{1}{2}(y_1^* + y_2^*), \qquad y_1^* \neq y_{k,x^*}^*.
$$

From the preceding lemma we infer the existence of a partition of unity on K , ${\phi_i}_{i=1}^n \subset A(K)$ and the existence of points ${x_i}_{i=1}^n \subset X$ for which

$$
y_1^* \left(\sum_{i=1}^n \phi_i x_i \right) \neq y_{k,x^*}^* \left(\sum_{i=1}^n \phi_i x_i \right).
$$

Then there is an index $i, 1 \leq i \leq n$, such that $y_i^*(\phi_i x_i) \neq y_{k,x}^*(\phi_i x_i)$. By Theorem 2.1 and Theorem 2.2 there is a $\psi \in A(K)$ which satisfies:

$$
\psi(k) = \|\psi\| = 1, \ y_1^*(\psi x_i) \neq y_{k,x}^*(\psi x_i).
$$

Define two functionals $x_1^*, x_2^* \in S_{X^*}$ by

$$
x_1^*(x) = y_1^*(\psi x), \ \ x_2^*(x) = y_2^*(\psi x), \qquad x \in X.
$$

From (2) it follows that

$$
\frac{1}{2}(x_1^* + x_2^*)(x) = y_{k,x^*}^*(\psi x) = x^*(\psi(k)x) = x^*(x),
$$

that is, $x^* = \frac{1}{2}(x_1^* + x_2^*)$. Hence $x^* = x_1^*$ and in particular

$$
y_1^*(\psi x_i) = x_1^*(x_i) = x^*(x_i) = y_{k,x^*}^*(\psi x_i).
$$

We obtained a contradiction and by this the first part of the theorem is proved.

Now we pass to show that any extreme point of $S_{\gamma*}$ can be represented as in (1). Let $\mathscr{E} = \{y_{k,x^*}^*: k \in \partial K, x^* \in \partial S_{X^*}\}$. First we prove that ∂S_{Y^*} is included in the weak* closure of \mathscr{E} . To see this it suffices to show that $S_{\gamma*}$ is the weak* closure of conv \mathscr{E} (cf. [7, p. 80]). Let $y_0^* \in S_{\gamma^*}$ and suppose that $y_0 \notin w^* - cl$ (conv \mathscr{E}). Then, by the separation theorem for compact convex sets there exist a $y \in Y$ and a real number α such that $y_0^*(y) > \alpha$ and $y^*(y) < \alpha$ for every $y^* \in w^* - cl(\text{conv } \mathscr{E})$. In particular

$$
x^*(y(k)) = y^*_{k,x^*}(y) < \alpha, \ k \in K, \ x^* \in \partial S_{X^*}.
$$

By the Krein-Milman theorem and Bauer's maximum principle $\lceil 2 \rceil$ it follows that $||y|| \leq \alpha$ in contradiction with $y_0^*(y) > \alpha$. Consequently, $\partial S_{Y^*} \subset w^* - cl(\mathscr{E})$.

Let $y^* \in S_y$. By what we have just proved we can find two nets: ${k_i}_{i,i} \in I \subset \partial K$, ${x_i^*}_{i \in I} \subset \partial S_{X^*}$ such that ${y_{k_i,x^*i}^*}_{i \in I}$ converges to y^* in the w*-topology of Y^* . We may assume that the first net converges to $k \in K$ and the second converges to $x^* \in S_{X^*}$ in the w^{*}-topology of X^* . Define $y^*_{k,x^*} \in S_{Y^*}$ by

$$
y_{k,x}^*(y) = x^*(y(k)), \qquad y \in Y.
$$

We have

$$
\begin{aligned} \left| y_{k,x}^*(y) - y_{k,x}^*(y) \right| &\leq \left| x^*(y(k)) - x_i^*(y(k)) \right| \; + \\ &+ \left| x_i^*(y(k)) - x_i^*(y(k_i)) \right| \; \leq \; \left| x^*(y(k)) - x_i^*(y(k)) \right| \; + \; \left| y(k) - y(k_i) \right| . \end{aligned}
$$

It is easily seen from the above inequality that $y^* = y^*_{k,x^*}$. Clearly $y^* \in \partial S_{Y^*}$ implies that $k \in \partial K$, $x^* \in \partial S_{X^*}$. This concludes the proof of the theorem.

Now we turn to the space $A(K, X)$ itself. The following theorem generalizes a result of Lindenstrauss [13, p. 43].

THEOREM 3.3. Let X be a Banach space having the n.2.I.P. $(n \geq 3)$ and K *a simplex. Then A(K, X) has the n.2.I.P.*

Proof. According to [13, Lemma 4.2] it is enough to show that for any finite set $\{y_i\}_{i=1}^n \subset A(K, X)$ and any $\varepsilon > 0$ there exists a subspace $Z \subset A(K, X)$ having the n.2.I.P, such that the distance between y_i ($1 \le i \le n$) and Z is not greater than e.

From [12, Lemma 2.4] we infer the existence of a partition of the unity on *K,* $\{\phi_j\}_{j=1}^m \subset A(K)$, $\|\phi_j\|=1$, $1 \leq j \leq m$ and the existence of a set ${x_{ij}: 1 \leq i \leq n, 1 \leq j \leq m} \subset X$ for which

(1)
$$
\left| y_i(k) = \sum_{j=1}^m \phi_j(k) x_{ij} \right| < \varepsilon, \quad k \in K, \ 1 \leq i \leq n.
$$

It is easily seen that the subspace $Z \subset A(K, X)$,

$$
Z = \left\{ \sum_{j=1}^{m} \phi_j x_j : \{x_j\}_{j=1}^{m} \subset X \right\},\
$$

is isometrically isomorphic with $(X \oplus X \oplus \cdots \oplus X)_{t_{\infty}^m}$. Hence Z has the n.2.I.P. (cf. [13, Theorem 4.6]). By (1) we know that the distance of y_i from Z is at most 8 and this establishes the theorem.

THEOREM 3.4. Let K be a simplex and X a Banach space. Assume that a) *X* has the *n.2.I.P.* $(n \ge 3)$;

or

b) *X is strictly convex.*

Then a function $y \in Y = A(K, X)$ *is an extreme point of* S_Y *if and only if* $y(k) \in \partial S_X$ for every $k \in \partial K$.

Proof. One implication is trivial. We prove only that the condition is necessary.

a) Let $y \in \partial S_y$. Since Y has the n.2.I.P. then, according to [13, Theorem 4.7], we have $|y^*(y)| = 1$ for $y^* \in \partial S_{y*}$. Therefore, by Theorem 3.2, if $k \in \partial K$ and $x^* \in \partial S_{X^*}$ then $|x^*(y(k))| = 1$. Hence, if $k \in \partial K$, and $y(k) = \frac{1}{2}(x_1 + x_2)$, $x_1, x_2 \in S_X$ then for every $x^* \in \partial S_{x^*}$ we have $|x^*(x_1 + x_2)| = 2|x^*(y)| = 2$. It follows that $x^*(x_1) = x^*(x_2)$ for each $x^* \in \partial S_{X^*}$ and this together with the Krein-Milman theorem implies that $x_1 = x_2$.

b) We define the following map from S_x to 2^{S_x}

$$
T(x) = \{x' \in S_x: \parallel 2x - x' \parallel \leq 1\}, \quad x \in S_x.
$$

It is obvious that $x \in T(x)$, $T(x)$ is closed and T is an affine map. We shall prove that it is also lower semi-continuous. We have to show that for any $x \in S_x$, any $x' \in T(x)$ and any sequence $\{x_n\}_{n=1}^{\infty}$ converging to x there are $x'_n \in T(x_n)$, $n = 1, 2, \cdots$ such that $\{x'_n\}_{n=1}^\infty$ converges to *x'*.

If $||x|| = 1$ the above assertion is clear since in this case $T(x) = \{x\}$. Let $||x|| < 1$. We choose a sequence of numbers $\lambda_n \in [0,1]$, $\lambda_n \to 1$, such that

$$
\|x + \lambda_n(x' - x)\| \leq 1 - \|x - x_n\|, \|x - \lambda_n(x' - x)\| \leq 1 - \|x - x_n\|.
$$

It is easy to check that $x_n + \lambda_n(x'-x) \in T(x_n)$ and $||x'-[x_n + \lambda_n(x'-x)]|| \to 0$. This proves that T is lower semi-continuous.

Let us consider the map $T \circ y: K \to 2^X$ where $y \in \partial S_Y$. If for a certain $k \in \partial K$ we have $y(k) \notin \partial S_x$, that is $T \circ y(k) \neq \{y(k)\}\$ then, according to Theorem 1.1, there is an affine continuous selection of $T \circ y$, y' say, for which $y'(k) \neq y(k)$. Since

$$
y = \frac{y' + (2y - y')}{2}, \ y' \in S_Y, \ 2y - y' \in S_Y, \ y' \neq y,
$$

we obtained the desired contradiction.

REMARK. The conclusion of the previous theorem will no longer hold if the space X does not satisfy certain conditions like those imposed above. In [3] is given an example of a four-dimensional Banach space X such that not all the extreme points of the closed unit ball of $C([0,1],X)$ admit the representation expressed by Theorem 3.4.

4. The following lemma, stated also in [12, Lemma 4.1], gives a representation for operators having the range in *A(K).*

LEMMA 4.1. *Let K be a simplex, X a Banach space and suppose that T is* an operator from X into $A(K)$. Then there exists an affine and w^{*}-continuons *function* $\chi: K \to X^*$ *such that:*

$$
(1) \quad Tx(k) = \chi(k)(x), \quad x \in X, \ k \in K,
$$

(2) $||T|| = \sup_{k \in K} ||\chi(k)||$.

Conversely, to any affine and w-continuous function from K into X* there corresponds an operator* $T: X \to A(K)$, given by (1) whose norm satisfies (2). T is *compact if and only if* χ *is continuous in the norm topology of* X^* .

Combining Theorem 3.4 with the preceding lemma we obtain a characterization of the extreme compact operators whose range is the space $A(K)$. If X, Y are Banach spaces we denote by $\mathcal{L}(X, Y)$ the space of compact operators from X to Y with the usual norm.

THEOREM 4.2. *Let K be a simplex and X a Banach space whose dual has the n.2.I.P.* $(n \ge 3)$ *or is a strictly convex space. The operator* $T \in \mathcal{L}(X, A(K))$ *is an extreme point of the closed unit ball of* $\mathcal{L}(X, A(K))$ *if and only if there exists an affine and norm continuous function* $\chi: K \to S_{\chi^*}$ *such that*

 $T(x)(k) = \gamma(k)(x), x \in X, k \in K$

and $\chi(k) \in \partial S_{X^*}$ whenever $k \in \partial K$.

REMARKS. As pointed out above this characterization is not valid for any Banach space X . However, the theorem applies to a wide range of spaces which comprises all the L_p ($1 < p < \infty$) spaces since they are strictly convex, the L_1 spaces and those whose duals are L_1 spaces. The last categories of spaces enter here since they include spaces having the 3.2.I.P. (cf. [13, p. 44, Theorem 6.1]). For compact operators between two spaces of continuous functions on compact Hausdorff spaces the result was proved in [3].

Now we turn to the characterization of extreme positive operators from a $C(S)$ space to an $A(K)$ space. The extreme positive operators between two spaces of continuous functions (and even in more general situations) were characterized by A . and C . Ionescu Tulcea, Phelps [14] and Ellis [10] using methods which rely on the algebraic structure of the spaces. We found the idea of the proof of the next theorem in [3].

THEOREM 4.3. *Let K be a simplex, S a compact Hausdorff metrizable space* and \mathscr{L}_1 the set of positive operators T from C(S) to A(K) which satisfy T1=1. *Then the following statements are equivalent for an operator T from C(S) to* $A(K)$:

(i) *T* is an extreme point of \mathscr{L}_1 ;

(ii) *There is a function* $\chi: K \to C^*(S)$ which is affine and continuous in the *w*.topology of* C*(S), *such that*

$$
T(f)(k) = \chi(k)(f), \, f \in C(S), \, k \in K
$$

and which maps ∂K into S;

(iii) $T1 = 1$ *and for any f, g* $\in C(S)$, $T(f \vee g)$ *is the least upper bound of Tf and Tg in A(K).*

Proof. (i) \Rightarrow (ii). Denote by $\mathcal{M}_1(S)$ the set of probability Radon measures on S and define Φ : $\mathcal{M}_1(S) \rightarrow 2^{C^*(S)}$ in the following manner:

$$
\Phi(\mu) = {\mu' \in C^*(S): 2\mu \geq \mu' \geq 0}, \mu \in \mathcal{M}_1(S).
$$

We shall prove that Φ is a lower semi-continuous map when $\mathcal{M}_1(S)$ and $C^*(S)$ are equipped with the w*-topology. We have to show that if $\mu \in \mathcal{M}_1(S)$, $\mu' \in \Phi(\mu)$ and U is any neighborhood of μ' then there exists a neighborhood V of μ such that $\Phi(v) \cap U \neq \emptyset$ whenever $v \in V$.

Let

(1)
$$
U = \{v' \in C^*(S): \Big| \int_S f_i dv' - \int_S f_i d\mu' \Big| \leq 1, f_i \in C(S), 1 \leq i \leq n \}.
$$

Suppose that there is a net $\{v_{\alpha}\}\subset \mathcal{M}_1(S)$ converging to μ for which $\Phi(v_{\alpha}) \cap U = \emptyset$ for every α . From the Radon-Nikodym theorem we infer that there exists a Borel function g on S such that $0 \le g \le 2$ and $d\mu' = g d\mu$. Choose $g_1 \in C(S)$, $0 \leq g_1 \leq 2$, which satisfies:

(2)
$$
\int_{S} |g - g_{1}| d\mu \leq (2 \|f_{i}\|)^{-1}, 1 \leq i \leq n, \|f_{i}\| \neq 0.
$$

If we define the measure v'_A on S by $dv'_\text{A} = g_1 dv_\text{A}$ then $v'_\text{A} \in \Phi(v_\text{A})$ and

(3)
$$
\lim_{\alpha} \int_{S} f_i dv_{\alpha}' = \lim_{\alpha} \int_{S} f_i g_1 dv_{\alpha} = \int_{S} f_i g_1 d\mu.
$$

We have

(4)
$$
\left| \int_{S} f_i d\mu' - \int_{S} f_i d\nu_{\alpha}' \right| \leq \left| \int_{S} f_i g d\mu - \int_{S} f_i g_1 d\mu \right| + \left| \int_{S} f_i g_1 d\mu - \int_{S} f_i d\nu_{\alpha}' \right|.
$$

From (1)-(4) we deduce that v'_A is eventually in U and this is the desired contradiction.

We now define another map $\Phi' = \mathcal{M}_1(S) \rightarrow 2^{\mathcal{M}_1(S)}$ as follows:

$$
\Phi'(\mu) = \Phi(\mu) \cap \mathscr{M}_1(S), \ \mu \in \mathscr{M}_1(S).
$$

It is easy to see that Φ' is affine and $\Phi'(\mu)$ is a w*-closed subset of $\mathcal{M}_1(S)$ for every $\mu \in \mathcal{M}_1(S)$. We shall show that Φ' is lower semi-continuous too. Take $\mu \in \mathcal{M}_1(S)$, $\mu' \in \Phi'(\mu)$ and suppose that $\{v_{\alpha}\}\subset M_1(S)$ is a net w*-converging to μ . By the lower

semi-continuity of Φ there are measures $v'_a \in \Phi(v_a)$ such that the net $\{v'_a\}$ converges to μ' . Define

$$
\mathbf{v}_{\alpha}'' = \begin{cases} \mathbf{v}_{\alpha}'/\|\mathbf{v}_{\alpha}'\|, & \|\mathbf{v}_{\alpha}'\| \geq 1, \\ [2(1 - \|\mathbf{v}_{\alpha}'\|)\mathbf{v}_{\alpha} + \mathbf{v}_{\alpha}']/(2 - \|\mathbf{v}_{\alpha}'\|), & \|\mathbf{v}_{\alpha}'\| < 1. \end{cases}
$$

Clearly $v''_{\alpha} \ge 0$, $2v_{\alpha} - v''_{\alpha} \ge 0$ and $||v''_{\alpha}|| = 1$, therefore $v''_{\alpha} \in \Phi'(v_{\alpha})$. Since

 $\lim_{\alpha} ||v_{\alpha}'|| = \lim_{\alpha} v_{\alpha}'(1) = \mu'(S) = 1,$

the net $\{v''_{\alpha}\}\$ is w*-converging to μ' . We proved that for any $\mu \in \mathcal{M}_1(S)$, any $\mu' \in \Phi'(\mu)$ and any net $\{v_{\alpha}\} \subset \mathcal{M}_1(S)$ w*-converging to μ there are measures $v''_{\alpha} \in \Phi'(v_{\alpha})$ w*-converging to μ' i.e. Φ' is lower semi-continuous.

Let T be an extreme point of \mathcal{L}_1 and $\chi: K - C^*(S)$ the function representing it given by Lemma 4.1. Obviously $\chi(K) \subset \mathcal{M}_1(S)$. The map $\Phi' \circ \chi: K \to 2^{\mathcal{M}_1(S)}$ fulfills all the conditions of Theorem 1.1. If $\chi(k)$ does not belong to S for a certain $k \in \partial K$, that is $\Phi'(\chi(k)) \neq {\chi(k)}$ then there is an affine continuous selection χ' of $\Phi_{\alpha} \chi$ whose value at k is different from $\chi(k)$. The selection theorem may be used here since $\mathcal{M}_1(S)$ can be imbedded into a Fréchet space by the separability of $C(S)$ (see, for instance, the proof of Theorem 3.5 in [12]). If T' is the operator from $C(S)$ to $\mathcal{M}_1(S)$ corresponding to χ' then T' and $2T-T'$ belong to \mathcal{L}_1 . This is a contradiction since T is an extreme point of \mathcal{L}_1 .

The proof of (ii) \Rightarrow (i) is trivial. We turn to (ii) = (iii). If (ii) holds then $T1 = 1$. Pick $f, g \in C(S)$. Obviously $T(f \vee g) \geq Tf, Tg$. Let $h \in A(K)$, $h \geq Tf, Tg$. If $k \in \partial K$ we have

$$
T(f \vee g)(k) = (f \vee g)(\chi(k)) = f(\chi(k)) \vee g(\chi(k))
$$

=
$$
T(f)(k) \vee T(g)(k) \geq h(k).
$$

By the maximum principle of Bauer [2] this implies $T(f \vee g) \geq h$.

(iii) \Rightarrow (ii). Let $\chi: K \rightarrow C^*(S)$ be the function representing the operator T given by Lemma 4.1. If $f, g \in C(S)$, $k \in \partial K$ then

$$
(f \vee g)(\chi(k)) = (T(f) \vee T(g))(k) = T(f)(k) \vee T(g)(k)
$$

= $f(\chi(k)) \vee g(\chi(k)).$

This means that $\chi(k)$ is a lattice homomorphism of $C(S)$ into $(-\infty, \infty)$, which maps the function identically equal to 1 on S to 1. Hence, $\chi(k) \in S$ (cf. [7, p. 97]) and this completes the proof of the theorem.

REMARK. The assumption of metrizability of S entered in the proof only through **Theorem 1.1.** Therefore, the conclusion of Theorem 4.2 is valid also if K is a metrizable simplex and S is homeomorphic with a w-compact subset of a Banach space (see [5], [6] and [1]). It is likely that the theorem is true without any restrictions on S or on K but we have not succeeded in proving it.

The situation is entirely different if we interchange the roles of the spaces *A(K)* and $C(S)$ in the previous theorem. Let A be the space of the sequences $\{x_n\}_{n=1}^{\infty}$ converging to $\frac{1}{2}(x_1 + x_2)$ with the supremum norm. By [13, p. 78, Theorem 4.7] and [16] there is a simplex K such that $A = A(K)$. For instance, K may be the positive face of the unit ball of $l_1 = A^*$. Let T be the identity operator from A to c —the space of converging sequences. Then T is an extreme positive operator but the function from the compactification of the integers N_{∞} to K representing it maps the unique non-isolated point of N_{∞} to a non-extreme point of K. Still, a dense set of N_{∞} is mapped into ∂K . We are going to show that for any compact Hausdorff space S there are a simplex K and an extreme positive operator T $T: A(K) \to C(S)$ such that the representing function of T maps $s \in S$ into ∂K if and only if s is an isolated point of S. A similar fact was proved in $\lceil 3 \rceil$ but there the domain was not a space of affine continuous functions on a simplex.

EXAMPLE 4.4. Let S be a compact Hausdorff space and S' the set of nonisolated points of S. Denote by $e_s(s \in S)$ the following function on S:

$$
e_s(t) = \begin{cases} 0, & t \neq s, \\ 1, & t = s. \end{cases}
$$

Obviously $e_s \in c_0$ (S), $e_s \in l_1(S)$. The dual of $X = (C(S) \oplus c_0 (S))_{l_0}$ is $X^* = (C^*(S) \oplus l_1(S))_{l^2}.$

Consider the following subset of X^* :

$$
M = \{(s, \pm e_s) : s \in S'\} \cup \{(s, 0) : s \in S\}.
$$

M is bounded and w^{*}-closed; thus $K = w^* - cl(\text{conv }M)$ is a w^{*}-compact set whose extreme points belong to M . We shall show that K is a simplex but first we identify the extreme point of K. Clearly, if $s \in S'$ then $(s, 0) \notin \partial K$. If $s \in S - S'$ then $(e_s, 0) \in X$ is a w^{*}-continuous linear functional on X^* . Its maximal value on K is 1 and it is attained only at $(s,0)$, thus $(s,0) \in \partial K$. Pick now $s \in S'$. The w^{*}continuous linear functional $(0, e_s)$ takes its maximal value on M at (s, e_s) and its minimal value at $(s, -e_s)$. Consequently $(s, \pm e_s) \in \partial K$. We proved

$$
\partial K = \{(s, \pm e_s) : s \in S'\} \cup \{(s, 0) : s \in S - S'\}.
$$

Now we turn to prove that K is a simplex. Let μ_1, μ_2 be two probability Radon measures on K maximal in the ordering of Choquet. That is, if μ is a positive Radon measure on K and $\int_K \phi d\mu \ge \int_K \phi d\mu_i$ for every continuous convex function ϕ then $\mu = \mu_1$. Assume that $\int_K \psi d\mu_1 = \int_K \psi d\mu_2$ for each affine continuous function ψ . We have to show that $\mu_1 = \mu_2$.

We begin by showing that $\mu_1({{(s,0)}}) = \mu_2({{(s,0)}}) = 0$ if $s \in S'$. It suffices to carry on the proof only for μ_1 . Suppose that this were not true and denote by ε^+ , ε^- , ε the point measures of (s, e_s) , $(s, -e_s)$ and $(s, 0)$, respectively. The measure

$$
\mu = \mu_1 - \alpha \varepsilon + \frac{\alpha}{2} (\varepsilon^+ + \varepsilon^-),
$$

where $\alpha = \mu_1({\{(s, 0)\}}) > 0$ is non-negative and if ϕ is a continuous convex function on K then

$$
\int_K \phi(d\mu) = \int_K \phi d\mu_1 + \alpha [\frac{1}{2}(\phi(s, e_s) + \phi(s, -e_s)) - \phi(s, 0)] \ge \int_K \phi d\mu_1.
$$

Since μ_1 is maximal we have $\mu_1 = \mu$. Thus $\alpha = 0$ and our assertion is proved.

By a well-known property of maximal measures μ_1, μ_2 are concentrated on $\overline{\partial K}$ (cf. [4], [15, p. 30]), i.e., $\mu_1(M) = \mu_2(M) = 1$. Thus it is enough to prove the equality of their restrictions to M. The set $\{(s, \pm e_s): s \in S'\}$ contains only isolated points of M; therefore, if $E \subset \{(s, \pm e_s) : s \in S'\}$ and if $a_s^i = \mu_i(\{(s, e_s)\})$ $b_s^i = \mu_{i}(\{(s, -e_s)\})$, then

$$
\mu_i(E) = \sum \{a_s^i : (s, e_s) \in E\} + \sum \{b_s^i : (s, -e_s) \in E\}, \quad i = 1, 2.
$$

Define two regular measures on the Borel sets of S by

(1)
$$
m_i(T) = \mu_i(\{(s,0): s \in T\}), \ T \subset S, \ i = 1, 2.
$$

Let $f \in C(S)$, $f' \in c_0(S)$. Since $\int_K (f, f') d\mu_1 = \int_K (f, f') d\mu_2$ we have

(2)
$$
\int_{S} f dm_{1} + \sum_{s \in S'} a_{s}^{1}(f(s) + f'(s)) + \sum_{s \in S'} b_{s}^{1}(f(s) - f'(s))
$$

$$
= \int_{S} f dm_{2} + \sum_{s \in S'} a_{s}^{2}(f(s) + f'(s)) + \sum_{s \in S'} b_{s}^{2}(f(s) - f'(s)).
$$

We choose $f = 0$, $f' + e_s$ for $s \in S'$. From (2) we get

(3)
$$
a_s^1 - b_s^1 = a_s^2 - b_s^2, \qquad s \in S'.
$$

Thus, if $f \in C(S)$, we have

$$
\int_{S} f dm_2 + \sum_{s \in S'} (a_s^1 + b_s^1) f(s) = \int_{S} f dm_2 + \sum_{s \in S'} (a_s^2 + b_s^2) f(s).
$$

This together with (1) and $m_1({s}) = m_2({s}) = 0$, $s \in S'$, gives

$$
m_1 = m_2
$$
; $a_s^1 + b_s^1 = a_s^2 + b_s^2$, $s \in S'$.

By (3) we infer $a_s^1 = a_s^2$, $b_s^1 = b_s^2$, hence $\mu_1 = \mu_2$ and the proof that K is a simplex is completed.

Now define $\chi: S \to K$ by $\chi(s) = (s, 0)$ and consider the operator $T: A(K) \to C(S)$ given by

$$
T(g)(s) = g(\chi(s)) = g(s,0), \quad g \in A(K), \ s \in S.
$$

Clearly $T \ge 0$, $T1 = 1$. We are going to show that T is an extreme positive operator despite the fact that $\chi(s)$ is not an extreme point of K whenever $s \in S'$. If T were not an extreme positive operator then there would exist a non-identically null w^{*}-continuous function $\psi: S \to A^*(K)$ such that $\gamma(s) + \psi(s) \in K$ for each $s \in S$. If $s \in S - S'$ then $\psi(s) = 0$, since $\gamma(s)$ is an extreme point of K. Now let $s \in S'$. Since K is a simplex and $\chi(s)$ is the middle of the segment joining the extreme points (s, e_s) $(s, -e_s)$ we have $\chi(s) + \psi(s) = (s, \lambda_s e_s)$ where $|\lambda_s| \leq 1$. Choose a net $\{s_{\alpha}\}\subset S'$, $s_{\alpha}\rightarrow s$, $s_{\alpha}\neq s$. Then $\chi(s_{\alpha}) + \psi(s_{\alpha}) \rightarrow \chi(s) + \psi(s)$ and, on the other hand, $(s_{\alpha}, \lambda_{s_{\alpha}}, e_{s_{\alpha}}) \rightarrow (s, 0)$. Hence $\lambda_{s} = 0$ and $\psi(s) = 0$. We proved that $\psi = 0$, in other words T is an extreme positive operator.

REFERENCES

1. D. Amir and J. Lindenstrauss, *The structure of weakly compact sets in Banach spaces* (to appear).

2. H. Bauer, *Minimalstellen von Funktionen und Extremalpunkte,* Archiv der Math. 9 (1958), 389-393.

3. R. M. Blumenthal, J. Lindenstrauss and R. R. Phelps, *Extreme operators into C(K),* Pacific J. of Math. 15 (1965), 747-756.

4. G. Choquet and P. A. Meyer, *Existence et unicité des representations intégrales dans les convexes compacts quelconques, Ann.* Inst. Fourier (Grenoble). 13 (1963), 139-154.

5. H. H. Corson and J. Lindenstrauss, *Continuous selections with nonmetrizable range,* Trans. Amer. Math. Soc. 121 (1966), 492-504.

6. H. H. Corson and J. Lindenstrauss, *On weakly compact subsets of Banach spaces,* Proc. Amer. Math. Soc. 17 (1966), 407-412.

7. M. M. Day, *NormedLinear Spaces,* Springer, Berlin (1958).

8. D. A. Edwards, *Minimum-stable wedges of semi-continuous functions* (to appear).

9. S. Eilenberg, *Banach space methods in topology, Ann.* of Math. 43 (1942), 568-579.

10. A. J. Ellis, *Extreme positive operators,* Oxford Quarterly J. Math. 15 (1964), 342-344.

11. R. E. Fullerton, *Geometrical characterizations of certain function spaces,* Proc. Inter. Symposium on Linear Spaces, Jerusalem (1961), pp. 227-236.

12. A. J. Lazar, *Spaces of affine continuous functions on simplexes* (to appear).

13. J. Lindenstranss, *Extensions of compact operators,* Memoirs Amer. Math. Soc. 48 (1964), 112 p.

14. R. R. Phelps, *Extreme positive operators and homomorphisms*, Trans. Amer. Math. Soc. 108 (1963), 265-274.

15. R. R. Phelps, *Lectures on Choquet's Theorem,* Van Nostrand, Princeton (1965).

16. Z. Semadeni, *Free compact convex sets*, Bull. Acad. Polon. Sci. Sér. sci. math. astr. et phys. 13 (1964), 141-146.

THE HEBREW UNIVERSITY OF JERUSALEM