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ABSTRACT 

If K is a simplex and X a Banach space then A(K, X) denotes the space of 
affine continuous functions from K to X with the supremum norm. The ex- 
treme points of the dosed unit ball of A(K, X) are characterized, X being 
supposed to satisfy certain conditions. This characterization is used to in- 
vestigate the extreme compact operators from a Banach space X to the space 
A(K) = A(K, (-- cx), ~))). 

1. I f  S is a compact  Hausdorff  space then it is well known t h a t f ~  C(S)is  an 
extreme point of  the closed unit ball if and only if If(s)l -- i everywhere on S. 

Our first aim is to extend this characterization to the more general situation of  

the space A(K, X ) -  the space of  affine continuous functions on the simplex K 

having values in the Banach space X with the supremum norm: IlSll-- sup ,,,[lf(k)ll. 
I t  is shown that if X is strictly convex or if every three mutually intersecting 

closed balls of  X have a point in common then f cA(K, X) is an extreme point 

of  the closed unit ball if and only if it maps the extreme points of  K into the 
extreme points of  the closed unit ball of  X (Theorem 3.4). We obtain this charac- 
terization through a similar one for the extreme points of  the dosed unit ball 

of  A*(K, X) (Theorem 3.2). In Section 2 we discuss the maximal convex subsets 
of  the unit sphere of  A(K)= A(K , ( -  ~ ,  oo)); their simple representation is 

helpful in the next section. In Section 4 we use our results to investigate the 
extreme compact  operators from a Banach space X into A(K). This section 
contains also a characterization of  the extreme positive operators f rom a C(S) 
space (S metrizable compact  Hausdorff) to A(K): their representing functions 
map the extreme points of  K into the point measures of  S (Theorem 4.2). The 

paper ends with an example which shows that the extreme positive operators 
f rom an A(K) space to a C(S) space cannot be characterized in a similar manner.  

We deal only with Banach spaces over the real field. The dosed unit ball of  a 

Banach space X is denoted by Sx. A Banach space is said to have the n.2. inter- 
section property (n.2.I.P.) if  every collection of n mutually intersecting closed 
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balls in X has a common point. By operators we always mean a bounded linear 
operator. 

I f K  is a convex subset of a linear space then F c Kis a face of K if it is convex 
and satisfies: 0 < 2 < 1, kl, k2 e K, 2kx + (1 - 2)k2 e F =~ kt, k2 e F. An extreme 
point of K is a one point face of it. The set of the extreme points of  K is denoted 
by OK. 

Let K be a compact convex subset of a locally convex linear topological space. 
The probability Radon measures on K are ordered by 

for every convex continuous function ~b on K (Choquet's ordering). For each 
k e K there is a measure # on K, maximal in this ordering, which represents k, 
that is, f (k)  = J'Kfd#for any atfine continuous function f on K (cf. [4], [15]). 
K is a simplex if for each of its points the representing maximal measure is unique. 
The reader may find all the fundamental facts about simplexes in [4] or [15]. 

If  S is a compact Hausdorff space the probability Radon measures on S form 
a simplex in C*(S) when this spaceis endowed with its w*-topology. This simplex 
is of a special type since its extreme points form a dosed set. C(S) is isometrically 
isomorphic with the space of all the affine continuous functions on this simplex. 
We shall make no distinction between S and its canonic image in C*(S). Similarly, 
any simplex K can be imbedded by an affine homeomorphism into A*(K): 
Tk( f )  = f ( k )  for k e K, f e  A(K). It is convenient to consider K imbedded in this 
way into A*(K). 

A collection of non-negative functions (f~}7= 1 c A(K) is called a partition of 
the unity on the simplex K if ~ =  l fi = 1. 

I f  M is a set then we denote by 2 u the family of all its subsets. Let X, Y be 
topological spaces. A map T : X  ~ 2 r is said to be lower semi-continuous if for 
any open set U c Y the set (x e X: T(x) n U 4 ~ }  is open in X. Suppose that 
E and F are linear spaces and K is a convex subset of E. A map T : K - ~ 2  v is 
called affine if T(k) is a non-void convex subset of F for every k e K and 

2T(k~) + (1 - 2) T(k2) c T(2kl + (1 - 2)k2) 

when 0 < 2 < 1, kt ,k  2 eK.  The following theorem on multi-valued maps defined 
on simplexes was proved in [12] and it is stated here for the convenience of the 
reader. 

THEOREM 1.1. (cf. [12, Theorem 3.1, Corollary 3.3]). 
Let E be a Frechet space and K a simplex. Suppose that T : K o 2  E is an 

affine lower semi-continuous map such that T(k) is closed for every k e K.  Then 
there exists an affine continuous selection for T, that is, an affine continuous 
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function f : K - - , E  with f ( k ) e T ( k )  for each k e K .  Moreover, i f  koeOK and 
x e T(ko) then f can be chosen such that f(ko) = x. 

2. The following theorem was proved by Eilenberg [9] for the space of all 
continuous functions on a compact Hausdorff space. The proof given below 
is an adaptation of his proof to the more comprehensive class of the spaces of 
affine continuous functions on simplexes. 

THEOREM 2.1. Let K be a simplex and Q a maximal convex subset of 
{f A(K): IIfII = 1}. Then there exist kodaK and a sign 8 (i.e. 8 =  -I- 1) such 
that 

(1) Q = = . ,  Ilsnl}. 

Conversely, every set determined by a point ko e OK and a sign ~ as in (1) is a 
maximal convex subset of the boundary of Satr). 

Proof. Let Q be a maximal convex subset of { fe  A(K): Itf[I = 1I. For every 
f e  Q we define the following dosed faces of K: 

F~ = { k s K : f ( k ) =  l} ,  F ; =  { k ~ K : f ( k ) =  - l} .  

The first assertion of the theorem will be proved if we show that n s ~ ~2Fs "+~ ~"  
or n s ~ qF2 ¢ j~. Indeed, if one of these sets is non-void, say n s ~ eFJ '+ # J~, 
then, being a dosed face of K,  we can find k o e n s ~ e(F} " n OK). Clearly 

(2) Q = { f sA(K): f (ko)  = Ilfll = 1}. 
and the maximality of Q implies that (2) holds with equality sign between its 
members. 

Let us suppose that n s ~ Q F  ] = n s ~QF] = ~ .  By the compactness of K 
there are {f,}7=1, {g~}~ 1 = Q such that 

i=1 j = l  

Since Q is convex we have (Z~=xf ,+  Z T = l g j ) / ( m + n ) e Q .  Hence 
II ZT=lf, + Z?=, g~ll = m + n. Obviously this equality contradicts (3) so (1) 
holds for a certain point ko ~ OK. 

Now let ko e OK, 8 = __+ 1 and 

Q = { f e A ( K ) : f ( k o ) = e '  llfll = 1}. 

Assume that there is a convex subset Q' c { f e  A(K): Ilfll = 1} such that Q' = Q, 
Q' ~ Q. Pick f ~  Q' ~ Q and denote 

F ÷ = { k e r : f ( k ) =  1}, F -  = ( k ~ K ; f ( k ) =  - 1 } ,  

The extreme point ko does not belong to the closed face F = cony(F+ u F - )  
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since k 0 CF + U F - .  Indeed, Ic o e F  + u F -  implies f e  Q u ( -Q)  and if this were 
true then 0 = ½[f+ ( - f ) ]  would belong to Q. By a theorem of Edwards [8] 
there exists f ' e A ( K )  such that f{F=0 ,  f ' ( k o ) = e  and 11f'll--1. Clearly 

+ ' IIf f II < 2  therefore ½( f+ f ' )¢Q '  so Q' cannot be convex. This concludes 
the proof of the theorem. 

From a theorem of Lindenstrauss [13, Theorem 4.8] it follows that if Q is 
a maximal convex subset of {SeA(K): ]If II = 1~ then So(r) = conv(Q u ( -Q)) .  
We are going to prove that the closure is superfluous here. Of course, this is well- 
known for spaces of continuous functions (see [11]). 

THEOREM 2.2. I f  K is a simplex and Q is a maximal convex subset of 
( f e Z ( K ) :  Ilfll = then So(x)= conv(Q u ( -Q)) .  

Proof. We have to show that Sacr)c conv(Q u ( -Q)) .  Without loss of 
generality we may suppose that there exists a k0 e OX such that 

Q =  SeA<K):S<ko) = llsll = 

Let f e  S,~x). I f f e  Q u ( -Q)  there is nothing to prove so we may assume that 
f ¢ Q  u ( - Q ) .  Define the following affine continuous functions on K: 

fx(k) 2f(k) - 1 +f(ko) 2f(k) + 1 - f ( k o )  k e K.  
= 1 +f(ko) , f2(k) = 1 +f(ko) ' 

It is easy to check that hi = f l  V ( - 1 ) < f 2  A 1 =hz and h2(k:o)---1. From 
Edwards' separation theorem [8] we infer that there exists a g~ e A(K) such 
that h 1 < gl < h2 and gl(ko) = 1. If 

gz(k) = 2 f ( k )  - (1  + f(ko))g,(k ), k eK ,  
1 -f(go) 

then it is dear that g2 e - Q and 

f = ½[(1 +f(ko))g 1 + (1 - f(ko))gz].  

Since - 1  < f ( k o ) <  1 we proved that feconv(Q u ( - Q ) )  and this concludes 
the proof of the theorem. 

3. We now pass to the space A(K, X) and its dual. The following lemma is 
an easy consequence of Lemma 2.4 of [12]. 

LEXeaA 3.1. Let K be a simplex and X a Banach space. The following sub- 
set of A(K, X) is norm dense in A(K, X): 

{~,},"=, = x ,  {~,}ro~ ~A(r), ~, = X, ¢ ,~_ 0 .  
i = l  
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TI-mOREM 3.2. Let K be a simplex, X a Banach space, k ~ OK and x* ~ OSx,. 
The functional y~,x ,eA*(K,X)  defined by 

(1) y*,**(y)=x*(y(k)),  y e A ( K , X )  

is an extreme point of the closed unit ball of  A* (K ,X) .  Conversely, to every 
extreme point of this ball there correspond a k ~ 8K and an x*~ OSx. related 
to it by (1). 

Proof. Denote Y = A ( K , X ) .  Clearly if k E ~K and x*~ OSx. then the func- 
tional * Yk,,* given by (1) belongs to S t . .  Suppose that there are y*, y*~ St .  such 
that 

(2) * Yk,** = ½(Yt + Y*), Y* ~ * Y k , x *  ' 

From the preceding lemma we infer the existence of a partition of unity on K ,  
{~b~}~= 1 c A(K) and the existence of points {xi}~=l c X for which 

YT q ixi e * Yk ,x*  dPiXi " 
i = 1  i 1 

Then there is an index i, 1 < i < n, such that y*(dpixi) v~ yk*,x.(~bixi). By Theorem 
2.1 and Theorem 2.2 there is a ~ ~ A(K) which satisfies: 

--II ll = 1, y*(ffx,) ~ yZx,(~kxi). 

Define two functionals x*, x*e  Sx° by 

x*(x) = y*(~kx), x*(x) = y*(~kx), x ~ X. 

From (2) it follows that 

½(x'; + x * ) ( x )  = = x*(4 , (k )x )  = x* (x ) ,  

that is, x* = ½(x~ + x2*). Hence x* = x* and in particular 

y*(~kxi) = x*(x,) = x*(x,) = y*,x.(~xi). 

We obtained a contradiction and by this the first part of the theorem is proved. 
Now we Pass to show that any extreme point of Sy. can be represented as in (1). 

Let ~ =  {y*~° :k~OK,x*eOSx . } .  First we prove that 0Sy° is included in the 
weak* closure of g .  To see this it suffices to show that S t .  is the weak* closure 
of convg (cf. [7, p. 80]). Let Y0*e Sy, and suppose that Yo q~ w* - cl (cony g) .  
Then, by the separation theorem for compact convex sets there exist a y ~ Y and 
a real number a such that y~(y) > ct and y*(y) < a for every y* ~ w* - cl(conv or). 
In particular 

x*(y(k)) * = Yk.x,(Y) < ct, k ~ K ,  x* e ~Sx. .  
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By the Krein-Milman theorem and Bauer's maximum principle [-2] it follows 
that I1 Y H < a in contradiction with y*(y) > ~. Consequently, dSr. ~ w* - cl(g)'. 

Let y*~Sr . .  By what we have just proved we can find two nets: 
{k,},~i ~ ~K, {x*}i~i~ ~Sx. such t h a t  {YZ,x*,}i~l converges to y* in the w*-topology 
of Y*. We may assume that the first net converges to k e K and the second con- 
verges to x* ~ Sx. in the w*-topology of X* Define * • Yk.x* e St. by 

Yk*~(Y) = x*(y(k)), y ~ Y. 

We have 

[ *  * Yk,~*(Y) - Y~,,~,'(Y)I <= [x*(y(k)) - xT(y(k)) I + 

+ I x'/(Y(k)) - xT(y(k,))l ---- I x*(Y(k))  - x;'(Y(k))l + II y<k) - y<k,)II 

It is easily seen from the above inequality that Y* = Yk.x*.* Clearly y* eaSr .  
implies that k ~ ~K, x* e aSx.. This concludes the proof of the theorem. 

Now we turn to the space A(K,X) itself. The following theorem generalizes 
a result of Lindenstrauss [13, p. 43]. 

TrmOREM 3.3. Let X be a Banach space having the n.2.I.P. (n > 3) and K 
a simplex. Then A(K, X) has the n.2.I.P. 

Proof. According to [13, Lemma 4.2] it is enough to show that for any finite 
set {Yi}~= 1 = A(K, X) and any e > 0 there exists a subspace Z c A(K, X) having 
the n.2.I.P, such that the distance between yt (1 < i < n) and Z is not greater 
than e. 

From 112, Lemma 2.4] we infer the existence of a partition of the unity on 
K, A(K), I1 ,11 = 1, 1 < j < m  and the existence of a set 
{ x u : l < i < n ,  l < j < m } ¢ X  for which 

(1) y,(k) = ~ ~bj(k)xij]l<e, k e K ,  l<_i<_n. 
1=1 fl 

It is easily seen that the subspace Z c A(K, X),  

Z =  { ~  , j x j : { x j } 7 = l c X  }, 
1=1 

is isometrically isomorphic with (X (9 X ~ . . .  ~ X)t~o. Hence Z has the n.ZI.P. 
(el. [13, Theorem 4.6]). By (1) we know that the distance of y~ from Z is at most 
8 and this establishes the theorem. 

TrmoP~M 3.4• Let K be a simplex and X a Banach space. Assume that 
a) X has the n.2.LP. (n >= 3); 

o r  

b) X is strictly convex. 
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Then a function y • Y = A(K,X) is an extreme point of Sr if and only if 
y(k) • OSx for every k • OK. 

Proof. One implication is trivial. We prove only that the condition is necessary. 
a) Let y • OSr. Since Y has the n.2.I.P, then, according to [13, Theorem 4.7], 

we have l y*(y)l = 1 for y*•  OSr.. Therefore, by Theorem 3.2, if k • OK and 
x* • OSx° then I x*(y(k)) [ = 1. Hence, if k • OK, and y(k) = ½(xt + x2), xl, x2 • Sx 
then for every x* • 0Sx. we have I x*(xl + 12) 1 = 21x*(Y) l = 2. It follows that 
x*(xl) = x*(x2) for each x*~OSx, and this together with the Krein-Milman 
theorem implies that xl = x2. 

b) We define the following map from Sx to 2 s~ 

Z(x) = { x ' • S x :  l l E x - x ' [ I  =<_ 1} , x•Sx. 

It is obvious that x • T(x), T(x) is closed and Tis an affine map. We shall prove 
that it is also lower semi-continuous. We have to show that for any x • Sx, any 

X 0o x ' • T ( x )  and any sequence { n}n=l converging to x there are x~•T(x , ) ,  
IXVl°o n = 1,2,... such that t nsn=t converges to x' .  

If Ii x ll = 1 the above assertion is clear since in this case T(x)= {x}. Let 
II x II < 1. We choose a sequence of numbers 2n • [0,1], 2 n --* 1, such that 

II x + ~ X x ' -  x)II ---- 1 - I I  x -  x, 11. II x -  ~ X x ' -  x)II --- 1-II x -  x, II. 

It is easy to check that x, + 2,(x' - x ) •  T(x,) and 11 x ' -  ix, ÷ X,(x' - x)1 II - . 0 .  
This proves that T is lower semi-continuous. 

Let us consider the map T o y : K ~ 2  x where y•OSr.  If for a certain keOK 
we have y(k)60Sx,  that is T o y ( k ) #  {y(k)} then, according to Theorem 1.1, 
there is an affine continuous selection of To y,  y '  say, for which y ' (k )#  y(k). 
Since 

y' + ( 2 y - - y ' )  , y , • S r ,  2 y - y ' • S r ,  y' # y,  Y =  2 

we obtained the desired contradiction. 

REMARK. The conclusion of the previous theorem will no longer hold if the 
space X does not satisfy certain conditions like those imposed above. In [3] is 
given an example of a four-dimensional Banach space X such that not all the 
extreme points of the closed unit ball of C([0,1], X) admit the representation ex- 
pressed by Theorem 3.4. 

4. The following lemma, stated also in [12, Lemma 4.11, gives a representa- 
tion for operators having the range in A(K). 

LEMMA 4.1. Let K be a simplex, X a Banach space and suppose that T is 
an operator from X into A(K). Then there exists an aj~ne and w*-continuona 
function x :K ~ X* such that: 
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(1) Tx(k) = x(k)(x), x e X ,  k e K ,  

(2) ]1 zll -- sup, ~K II x(k)II. 
Conversely, to any affine and w*-continuous function from K into X* there 
corresponds an operator T: X ~ A(K), given by (1) whose norm satisfies (2). T is 
compact if and only if • is continuous in the norm topology of X*.  

Combining Theorem 3.4 with the preceding lemma we obtain a characteriza- 
tion of the extreme compact operators whose range is the space A(K). If X, Y 
are Banach spaces we denote by ~ (X,  ¥) the space of compact operators from 
X to Y with the usual norm. 

THEOREM 4.2. Let K be a simplex and X a Banach space whose dual has 
the n.2.I.P. (n >= 3) or is a strictly convex space. The operator T ~ Se(X,A(K)) 
is an extreme point of the closed unit ball of .~e(X,A(K)) i f  and only if there 
exists an affine and norm continuous function x:K--+Sx, such that 

T(x) (k) = x(k) (x), x e X ,  k E K 

and z(k) ~ dSx. whenever k ~ dK. 

REMARKS. As pointed out above this characterization is not valid for any 
Banach space X. However, the theorem applies to a wide range of spaces which 
comprises all the Lp (1 < p < oo) spaces since they are strictly convex, the L1 
spaces and those whose duals are L t spaces. The last categories of spaces enter 
here since they include spaces having the 3.2.I.P. (cf. [13, p. 44, Theorem 6.1]). 
For compact operators between two spaces of continuous functions on compact 
Hausdorff spaces the result was proved in [3]. 

Now we turn to the characterization of extreme positive operators from a 
C(S) space to an A(K) space. The extreme positive operators between two spaces 
of continuous functions (and even in more general situations) were characterized 
by A. and C. Ionescu Tulcea, Phelps [14] and Ellis [113] using methods which 
rely on the algebraic structure of the spaces. We found the idea of the proof 
of the next theorem in [3]. 

THEOREM 4.3. Let K be a simplex, S a compact Hausdorff metrizable space 
and -~q~l the set of positive operators T from C(S) to A(K) which satisfy T1 = 1. 
Then the following statements are equivalent for an operator T from C(S) to 

A(K): 
(i) T is an extreme point of ~1 ; 
(ii) There is a function z : K ~  C*(S) which is affine and continuous in the 

w*.topology of C*(S), such that 

T(f)(k) = x(k)( f) ,  f e  C(S), k e K  

and which maps ~K into S; 



1967] AFFINE FUNCTIONS ON SIMPLEXES AND EXTREME OPERATORS 39 

(iii) T I =  1 and for any f, geC(S), T(fV g) is the least upper bound of 
Tf and Tg in A(K). 

Proof. (i) :~ (ii). Denote by ~¢/1(S) the set of probability Radon measures 
on S and define ~:  ~a ' l (S)~ 2 c°(s) in the following manner: 

¢(~,) = {~' e c* ( s ) :  2t, > #' >= 0} ,  ~ ~ ~ l ( s ) .  

We shall prove that ¢ is a lower semi-continuous map when ./#1(S) and C*(S) 
are equipped with the w*-topology. We have to show that if # e. / /~(S),# '  e ¢(#) 
and U is any neighborhood of # '  then there exists a neighborhood V of # such 
that ¢(v) (~ U # ~ whenever v e V. 

Let 

(1) U= {v'eC*(S): f s f 'dv ' -  fsffl#'] < l ' f ieC(S) ' l  <i<n}" 

Suppose that there is a net {v,} c~¢t'~(S) converging to /~ for which 
O(v~) c~ U = ~ for every ~. From the Radon-Nikodym theorem we infer that 
there exists a Borel function g on S such that 0 < g < 2 and d#' = gdl~. Choose 
gl e C(S), 0 < gl < 2, which satisfies: 

f lg-g ldt, <-- (2IIY, I[) l < i < n ,  IIf, l[ (2) 

If  we define the measure v'~ on S by dv'~ = gtdv~ then v" e ¢(v~) and 

lim~ f sf, dv'~ = lim~ f sf, g~dv~ = f sf,g,d#. (3) 

We have 

(4) 

+ I f/igld#-fsfidv'~ t • 

From (1)-(4) we deduce that v'~ is eventually in U and this is the desired contra- 
diction. 

We now define another map ~ ' =  ~/t'1(S)-~2 ~lts) as follows: 

m'(t~) = m ( ~ ) n ~ l ( s ) ,  # e ~ ( s ) .  

It is easy to see that ~ '  is affine and ~'(#) is a w*-closed subset of .~t(S)  for every 
# e ..¢t'i(S ) . We shall show that ¢ '  is lower semi-continuous too. Take # e ./t 'l(S), 
#'  e ¢ '(p) and suppose that {v,) c , / / l (S)  is a net w*-converging to/~. By the lower 
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semi-continuity of • there are measures v~' ¢ O(v,) such that the net {v'} con- 
verges to # ' .  Define 

,,: = .[,,:/I1,,'. II 
t. [2(1 - i l  ,,; I1>,'. + 4 ] / ( 2 -  I1 ,," I1>, 

 v;[I => 1, 

II v: [[ < 1. 

Clearly v: ~ 0, 2v~ - v: _~ 0 and I[ v:[[ = 1, therefore v'.'e ¢'(v~). Since 

lim~l[v'[] --lim~v'.(1) = #'(S) = 1, 

the net {C} is w*-converging to #'.  We proved that for any #~J~'I(S), any 
#'~¢b'(#) and any net {v~} c Jt 'l(S ) w*-converging to # there are measures 
v:~ ¢b'(v,) w*-converging to/~' i.e. ~ '  is lower semi-continuous. 

Let T be an extreme point of -oq' 1 and x:K - C*(S) the function representing 
it given by Lemma 4.1. Obviously x (K)c  J/I(S). The map ¢ '  o x : K - , 2  ~'(s) 
fulfills all the conditions of Theorem 1.1. If x(k) does not belong to S for a certain 
k ~ OK, that is ¢'(x(k)) ~ {z(k)} then there is an affine continuous selection X' 
of • o X whose value at k is different from x(k). The selection theorem may be 
used here since ~'~(S) can be imbedded into a Fr~chet space by the separability 
of C(S) (see, for instance, the proof of Theorem 3.5 in [12]). If T'  is the operator 
from C(S) to ~'1(S) corresponding to X' then T' and 2 T -  T' belong to -Oq'l. 
This is a contradiction since T is an extreme point of .£01 . 

The proof of (ii) :~ (i) is trivial. We turn to (ii) = (iii). If (ii) holds then T1 = 1. 
Pick f ,g~C(S) .  Obviously T ( f V  g)>=Tf, Tg. Let h~A(K), h > T f ,  Tg. I f  
k ~ OK we have 

r ( f  V g) (k) = (Jr V 3) (z(k)) = fO~(k)) V g(x(k)) 

= T(f) (k) V T(g) (k) >= h(k). 

By the maximum principle of Bauer [2] this implies T(f  V g) > h. 
(iii) :~ (ii). Let ;(: K -} C*(S) be the function representing the operator T given 

by Lemma 4.1. If f, g e C(S), k ~ OK then 

( f  V g) (x(k)) = ( r ( f )  V T(g)) (k) = T(f) (k) V T(g) (k) 

= f (z (k ) )  V g(z(k)).  

This means that x(k) is a lattice homomorphism of C(S) into ( -  oo, oo), which 
maps the function identically equal to 1 on S to 1. Hence, x(k) ~ S (cf. [7, p. 97]) 
and this completes the proof of the theorem. 

Rmt~K. The assumption ofmetrizability of S entered in the proof only through 
Theorem 1.1. Therefore, the conclusion of Theorem 4.2 is valid also if K is a 
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metrizable simplex and S is homeomorphic with a w-compact subset of a Banach 
space (see [51 , [61 and [11). It is likely that the theorem is true without any re- 
strictions on S or on K but we have not succeeded in proving it. 

The situation is entirely different if we interchange the roles of the spaces A(K) 
and C(S) in the previous theorem. Let A be the space of the sequences {xn}~= t 
converging to ½(Xl + x2) with the supremum norm. By [13, p. 78, Theorem 4.71 
and [16] there is a simplex K such that A = A(K). For instance, K may be the 
positive face of the unit ball of Ix = A*. Let T be the identity operator from A 
to c - - t he  space of converging sequences. Then T is an extreme positive operator 
but the function from the compactification of the integers Noo to K representing 
it maps the unique non-isolated point of Noo to a non-extreme point of K .  Still, 
a dense set of No~ is mapped into 0K. We are going to show that for any compact 
Hausdorff space S there are a simplex K and an extreme positive operator T 
T : A ( K ) ~  C(S) such that the representing function of T maps s ~ S  into OK 
if and only if s is an isolated point of S. A similar fact was proved in [31 but 
there the domain was not a space of affine continuous functions on a simplex. 

EXAMPLE 4.4. Let S be a compact Hausdorff space and S' the set of non- 
isolated points of S. Denote by e,(s ~ S) the following function on S: 

~0, t#s,  
es(t) 

1 1, t = s .  

Obviously e,~co (S), e,~ll(S).  The dual of X = (C(S) ~ c o (S))l~ is 
x *  -- (c*(s) • l~(s))~. 

Consider the following subset of X*: 

m = {(s, +e,) :  seS ' }  LI {(s,O):seS 1 . 

M is bounded and w*-closed; thus K = w*-c l (convM) is a w*-compact set 
whose extreme points belong to M.  We shall show that K is a simplex but first 
we identify the extreme point of K .  Clearly, if s ~ S' then (s, 0) 6 0K. If  s E S - 8' 
then (es,0)~ X is a w*-continuous linear functional on X*. Its maximal value on 
K is 1 and it is attained only at (s,0), thus (s,O)~OK. Pick now s~S ' .  The w*- 
continuous linear functional (0, es) takes its maximal value on M at (s, e,) and its 
minimal value at (s, - e,). Consequently (s, __. e~) ~ ~K. We proved 

OK = {(s ,+e,):seS '}  u { ( s , O ) : s e S - S ' } .  

Now we turn to prove that K is a simplex. Let #1,P2 be two probability Radon 
measures on K maximal in the ordering of Choquet. That is, if # is a positive 
Radon measure on K and fxdpd~ > Sxdpdp~ for every continuous convex function 

then # =/1~. Assume tha t  j'/t~kd/./1 = flc)~dl.t 2 for each affine continuous function 
~k. We have to show that #1 = #2. 
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We begin by showing that /q({(s,0)})= p2({(s:0)})= 0 if s;eS'. It suffices 
to carry on the proof only for btl. Suppose that this were not true and denote 
by ~+,e-,e the point measures of (s,e~), ( s , - e , )  and (s,0), respectively. The 
measure 

P = P l - ~ + 2 (  5+ + 8 - ) ,  

where 0~ = #l({(s, 0)}) > 0 is non-negative and if ~b is a continuous convex function 
on K then 

fK ~b(d#) = fK q~d#t + ~[½(qS(s,e~)+ ~b(s,-e~))-qg(s,0)] > fK dPdpl. 

Since #1 is maximal we have Pl = #. Thus ~ = 0 and our assertion is proved. 
By a well-known property of maximal measures lq,lt2 are concentrated on 

8K (cf. [4], [15, p. 30]), i.e., p~(M) = p2(M) = 1. Thus it is enough to prove 
the equality of their restrictions to M.  The set {(s, +__ e,): s e S'} contains only 
isolated points of M; therefore, if E c {(s, +es):s ~ S'} and if i a~ = p,({(s, e~)}) 
b~ =/4({(s, --e,)}), then 

I~,(E) = X{a2 :(s,e~)sE} + X{b~ :(s, - e~)eE}, i = 1,2. 

Define two regular measures on the Borel sets of S by 

(1) mi(T ) = #i({(s,O):seT}), T c  S, i = 1,2. 

Let f e  C(S), f '  e co(S ). Since fK(f,f')d#l = fK(f,f')dtl 2 we have 

f I S rS (2) f dml + ~,~ ~s,a,(J( ) + f ( ) )  + ~,s,s,b~(J(s) - f'(s)) 
S 

~s f dm2 + E ~s,a~(f(s) + f'(s)) + Es ~s,b~(f(s) - f '(s)). 

We choose J =  0, f '  + e, for s e S ' .  From (2) we get 

2 2 t b )=  a, bs seS'  ( 3 )  a s -  - , • 

Thus, if f e  C(S), we have 

Is fdm2+ + bl)f(s)= fdm2+ ~,~ ~ s,(a. + b~)f(s). 

This together with (1) and ml({s}) = m2({s}) = 0, s e  S ' ,  gives 

1 1 a)+ b 2, s eS ' .  rnl = rn2; a ~ + b s =  
1 2 I 2 By (3) we infer a~ = a, ,  b s = b s, hence lq = #2 and the proof that K is a simplex 

is completed. 
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N o w  define x : S - ,  K by  X(s) = (s, 0) and  consider the opera to r  T: A(K)- - ,  C(S)  

given by  

T ( g ) ( s )  = g(x(s))  = g ( s ,O) ,  g ~ . 4 ( g ) ,  s ~ S .  

Clearly T ~_ 0 ,  T1 = 1. We are going to show that  T i s  an extreme posit ive opera-  
tor  despite the fact tha t  X(s) is not  an extreme point  o f  K whenever  s e S ' .  I f  T 

were not  an extreme positive opera to r  then there would exist a non-ident ical ly  

null w*-continuous funct ion ~: S-- ,  A* (K)  such that  Z(s) _+ ~(s) e K for  each  

s ~ S.  I f  s ~ S - S '  then ~, (s) = 0, since X(s) is an extreme point  o f  K. N o w  let 

s ~  S ' .  Since K is a s implex and  X(s) is the middle  of  the segment  joining the 
extreme points  (s, es) ( s , -  es) we have X(s)+ ~ ( s ) =  (s,2~e~) where 12~1 < 1. 
Choose  a net {s~} c S ' ,  s~--,s, s, ~ s.  T h e n  X(s~) + ~/(s~) --, X(s) + ~(s) and,  on 
the other  hand,  (s~,2~ e~) -~ (s ,0) .  Hence  2~ = 0 and ~b(s) = 0.  We proved  
tha t  ~ = 0 ,  in other  words  Tis  an extreme posit ive operator .  
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